

b-watersmart.eu

Norwegian University of Science and Technology

SINTEF nord kontakt TECHNI

B-WaterSmart LIVING LABS

1) Alicante

Challenges

Water scarcity, limitations to water reuse due to high salinity/nitrates, limitations to water reuse due to low acceptance.

Innovation & Demonstration

Improve water-smartness in the municipality of Alicante by incrementing water reuse and boosting circular economy opportunities.

5) Lisbon

Challenges

Growing population and economy depend on distant freshwater resources with increasing climate challenges (e.g. droughts and floods). This demand must be balanced with the need to increase urban green areas to ensure the quality of life of citizens and the sustainability of urban life.

Innovation & Demonstration

Development of tools & processes to facilitate safe water reuse, improvment of water-energy-phosphorous efficiency in municipal non-potable water uses, improvement of households and buildings' climate readiness regarding water and energy with an assessment/certification tool developed locally but with an ambition for national/European adoption.

2) Bodø

Challenges

Growing resident population and economy, increased pollution, untapped efficiency potential.

Innovation & Demonstration

Zero emission urban development, improved management of the wastewater stream, improved air quality.

3) East Frisia

Challenges

Increasing water demand in supply area by growing sectors (households, industry, agriculture), limited groundwater resources, locally untapped water reuse potential.

Innovation & Demonstration

Increasing the carrying capacity of water supply: Identification of alternative resources, intelligent protection strategies for groundwater bodies and improved treatment of process water for reuse in milk production.

4) Flanders

Challenges

High drinking water demand due to dense population, high water demand for agriculture, groundwater overexploitation, water quality deterioration, water scarcity due to droughts, climate change and urbanisation.

Innovation & Demonstration

Development of regional concept for improving and monitoring water-smartness and a more robust water system, with a focus on safe water reuse.

6 Venice

Challenges

Need for reuse and recovery schemes for wastewater & sludge, limitations to reuse and recovery due to low acceptance, water scarcity, untapped efficiency potential (water and resources valorisation).

Innovation & Demonstration

Enable and complete the water reuse (industrial, agricultural and urban) goal of a regional/national plan for lagoon protection, apply nutrient recovery technologies to waste water treatment plants (WWTPs) and develop shared evaluation model-tools for the sustainability of WWTP effluents and sludge valorisation.

https://b-watersmart.eu/

Climate and energy ambitions

- Moving the current civilian airport gives us the opportunity to plan and develop the new areas of Bodø with particular focus on sustainability, climate, energy, environment and circularity
- High goals and ambitions both for Bodø Municipality and the New City – New Airport project
 - 70 % reduction in direct GHG-emissions (cf. 2009-levels) by 2030
 - 70 % recycling of materials (household and industry waste) by 2030
 - Bodø as a Low Emission Society in 2050
 - First developments as a ZEN-area

Feasibility study of blue green structure

The Water-Smartness Assessment Framework

Objective A Ensuring water for all relevant uses	A.1 Safe and secure	Safe drinking water (Heggmoen)		x	
	fit-for-purpose water provision	Safe drinking water All treatment facilities	x		
	A.3 Financial viability	Consumer willingness to pay		x	
		Affordability			X
		Financial continuation		x	

B-WaterSmart

Final version of the water-smartness assessment framework

Deliverable 6.3

https://b-watersmart.eu/results-downloads/water-smartness-assessment-framework/

This project has necessful functing from the European Union's Horizon 2020 research and innovation programme under grant approximative Resident No. 869171. The publication reflects only the authors' views and the European Union is not liable for any use that may be made of the lifetimation contained berein.

Criteria	Metric	Unit	Criteria	Metric		Unit	Criteria	Metric	Unit
Safe and A.1.1 Water exploitation index + % secure fit-for- A.1.2 Safe drinking water %		- A.3		Consumer willingness to pay	5-point Likert scales	Resource	C.3.1 Water-related m recovery C.3.2 Fertilizer produc	L	
					Affordability	5-point Likert scales	use	C.3.3 reclaimed wate uses C.3.4 Reclaimed wate C.3.5 Energy producti	cinality
A-E	ant uses	5	Financial continuation	5-point Likert scales	Enabling planning to	The municipalit	y of Bodø		
A(for any user)	A.2.3 Physical access to water supply for industrial use A.2.4 Physical access to water for	%	B.1 water ecosystems	B.1.2 B.1.3 B.2.1	Cost coverage ratio Environmental flow re compliance rate Effective stormwater t Effective wastewater Water body self-purifi Maintaining nursery p and habitats	- Pron	noting ad resilient	aptive change tow infrastructure	vards
B – S	Safeguarding ecosys services to so	stems ciety	and their		 Flood damage preverting the Water provision by the ecosystem People enjoying cultural ecosystem services 	%	infrastructure Effectiveness	D.3.1 Linear water losses D.3.2 Water storage capacity	m³/(year. km) days
	E.2.3 Room to maneuver	5-point Likert scales	B.3 Resource efficiency	B.3.2 B.3.3 B.3.4	Water footprint Carbon footprint Energy consumption Drinking water consu	– Enga	aging citiz	zens and actors actor	cross and
					Statutory compliance		inr	novation	
с – В	oosting value creation	on aro	und wate	r	Preparedness	5-point Likert scales		E.1.1 Knowledge and education	Likert scales
				-	Policy instruments	5-point Likert scales		E.1.2 Information availability and use	5-point Likert scales
	E.3.4 Metric "E.3.4" Collaborative agents	Likert scales		C.1.4	Green public procurement	% 5-point	Awareness E.1 and knowledge	E.1.3 Local sense of urgency	5-point Likert scales
AC: 15	AC: 15 Metrics: 58 + 2 context		Circular	C.1.5	Resource recovery revenues	scales %		E.1.4 Water smart culture	5-point Likert scales
B-WaterSmart		C.2 economy growth	C.2.2 C.2.3	2 Green jobs Circular economy business models in practice	%		E.1.5 Smart monitoring	5-point Likert scales	

Equation

The Water-Smartness Assessment Framework

 $\mathrm{C}_{\mathrm{totalDW}} = \left(1 - rac{\mathrm{n}_{\mathrm{e}\,\mathrm{totalDW}}}{\mathrm{n}_{\mathrm{totalDW}}}
ight) imes 100$

Please fill the option(s) below.

Total number of samples of drinking water with exceedance, i.e., sum of samples with microbial, chemical and indicator parameter exceedance

Table 6.1– Metric results and targets of Objective A

Objectives	Assessment	Motrico	Reference values			Results (t0)	Commont	Targets			
Objectives	criteria	Metrics	Poor 🔴	Fair 🔴	Good 🔵	(2022)	Comment	t1 (2030)	t2 (2040)	t3 (2050)	
	A.1 Safe and secure fit-for-	Safe <u>drinking</u> water <u>Heggmon</u> &	0-94.5	94.5-98.5	98.5-100 97,5	97,5	Total: 440 Total failed: 10 Majority of failed tests were turbidity.	96.5-98.5	98.5-100	98.5-100	
Objective A Ensuring water for all relevant uses	purpose water provision					•	Heggmoen vannverk supplies approximately 95% of population	•			
	A.3 Financial viability	Consumer willingness to pay	or -	0	+ or ++	0	We should give more information about the costs of water and quality of water, raise awareness	0	+	+	
		Affordability	or -	0	+ or ++	++		++	++	++	
		Financial continuation	or -	0	+ or ++	0	Political willingness, public willingness	0	0	+	

									Carbon footprint for wastewater				
			1			1		B.3 Resource efficiency	Energy consumption (Total)			x	
Objectives Assessment criteria	Assessment	Motrico	F	Reference values for	eference values for				Drinking water consumption				
	Metrics	Poor performance	Fair performance	Good performance				Statutory Compliance		x			
Objective A	A.1	Safe drinking water (Heggmoen)		x			Objective C Boosting value creation around water	e C.1 Circular d policy making	Preparedness	x			-
	Safe and secure fit-for-purpose water provision	Safe drinking water All treatment facilities	x						Policy instruments Level of ambition		x	x	
Ensuring water for all relevant uses		Consumer willingness to pay		x				D.1 Enabling planning to					
Objective B: Safe Safeguarding ecosystems and their services to society	A.3 Financial viability	Affordability			х		promote adaptive change towards	Infrastructure Planning Index for Adaptive Change		x			
		Financial continuation		x			resilience						
	B.1 Safeguarded water ecosystems	Effective wastewater/stormwater treatment					D.2 Implementing adaptive change towards resilient	Infrastructure <u>Implementation</u> Index for Adaptive Change	x				
		Carbon footprint for drinking water					Promoting adaptive change	infrastructure					
						-	infrastructure		Linear water losses	x			
	E.2 <u>Multi-sector</u>	Authority			x]		D.3	Incident occurrences in the system (Water pipe burst)			х	
	potential E.3	Room to maneuver			x		Effectiveness of the adaptive change towards	Incident occurrences in the system (Sewer stops)		x			
		Stakeholder inclusiveness			x	-		resilient infrastructure	Combined Sewer Overflows	x			
	E 0 Obeleshelder	Protection of core values			x		(Diagnosis)	Time for restoration (Sewer system facilities)			x		
	Engagement					-	-		Treatment capacity utilization	x			
	processes	Cross-stakeholder learning			X	-			Knowledge and education	x			
		Collaborative agents			x		Objective E Engaging citizens	E.1 Awareness	Information availability and use	x			
							and actors across sectors in continuous co-		Local sense of urgency		x		
B-Wat	terSmart						learning and innovation		Smart monitoring		х		

Clear division of responsibility

15

Х

Outcomes of completing the assessment:

Many within the water and waste department knows of these challenges, this document **helps other objectively understand the challenges** and why investments are needed

Gives a clear view of strengths and weaknesses

Highlights what data is missing

Introduksjon

• Living lab Bodø

Oversikt over LL Bodøs oppgaver

- Lover og regler
- The water-smart assessment framework
- Teknologier
- Programvare

Konklusjon

• Sammendrag

Alternatives: Biogas with different biosolids treatments

WaterSmart

MENGDER 2022

- Kloakkslam: 3000 tonn
 - 45% fra Bodø kommune
- Septik til avvanning: 4300 tonn
 - 80% fra Bodø kommune

Slam fra hele Salten, inkl. alle renseanlegg i Bodø kommune.

Annet organisk avfall:

- Matavfall: 9000 tonn
- Hageavfall: 6000 tonn
- Fiskeslam: 200 tonn (+++)

Norwegian University of Science and Technology

21

The goal is a water meter providing «real-time» granular data throughout its life made possible by energy from the water flow

- Generate and store energy for its own use and capability
- Provide online data to suppliers/municipalities
- Provide online data to the end user
- Measure flow, water temperature and pressure
- Two-way communication
- Household microleakage detection (valve & pressure)

The energy from the water is harvested optimally by a combination of pressure-controlled flow-by and a turbine optimized for low-flow volumes

Meters were assembled, calibrated and rolled-out, showing a strong energy balance and the data stream this far is good

Parameter	Frequency	Resolution		
Water Volume	Consumption the last 60 s, in L	8 ml per step		
Pressure	Every 60 s	0,1 bar		
Temperature	1/h	0,1 degree		
Battery	1/h	0,01 Volt		

Introduksjon

• Living lab Bodø

Oversikt over LL Bodøs oppgaver

- Lover og regler
- The water-smart assessment framework
- Teknologier
- Programvare

Konklusjon

• Sammendrag

Norwegian University of Science and Technology

Leakage detection algorithms

Prioritization of DMAs for leak reduction measures (Arendal)

 Jesper A. O. Vimme (MSc thesis, 2021), Water loss management and Data Quality assessment in Medium Sized Water Distribution Systems in Norway, <u>https://hdl.handle.net/11250/2830171</u>

Pressure reduction and pressure burst relationship (Bergen)

 Sam Alaya (MSc thesis, 2022), Assessment of Pressure-Pipe Life Expectancy and Pressure-Leakage Relationships in the Water Distribution System in Bergen, Norway. A Case Study, <u>https://hdl.handle.net/11250/3028251</u>

Autoencoders (AE) and variable Autoencoders (VAE) using artificial data (L-Town)

 Magnus Totland (MSc thesis, 2022), Detection of leakages in a water distribution network using an autoencoder, <u>https://hdl.handle.net/11250/3023048</u>

Leak localization with a dual model approach (Real world data)

 Erik Nordahl (MSc thesis, 2022), Leak Localization with the Dual Model on a Real-World Water Distribution System, <u>https://hdl.handle.net/11250/3021069</u>

Benchmarking of approaches (Gjøvik)

• Daniel Habenicht (MSc thesis, 2023)

27

NTTNU | Norwegian University of Science and Technology

Other Studies relating to developing a watersmart society

Low-cost measurement devices tested in a lab setting

 Meier, R., Tscheikner-Gratl, F., Steffelbauer, D.B., Makropoulos, C., 2022. Flow Measurements Derived from Camera Footage Using an Open-Source Ecosystem. Water 14, 424. <u>https://doi.org/10.3390/w14030424</u>

Quantifying Infiltration and Inflow in Data-Scarce Environments

 Christian Skagsoset (MSc thesis, 2023): Quantifying Infiltration and Inflow in Data-Scarce Environments - Possibilities and Co-benefits for Municipalities

Usage of camera footage to find wrong connection in a system

• Anders N. Løfald (MSc thesis, 2023): Using Optical Velocimetry to Detect Illicit Inflow to Sewers: A sensor strategy

Possible combination WDS and Sewer

• Magdalena Jaurena Beltrami (MSc thesis, 2023): On the interconnectivity of urban water system models - Possibilities, limitations, and feasibilities

DEPARTMENT OF INFRASTRUCTURE AND ENVIRONMENTAL ENGINEERING Division of Water Environment Technology

CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2023

DNTNU

Norwegian University of Science and Technology 28

nord kontakt[®]

Smart Water Meters Leakage detection algorithms Dashboards

Water-Smartness

Nessie system (#29)

- Nessie is visualization and analytic platform able to acquire, process and store high-resolution data from IoT (incl. sensors and smart meters), developed in ICCS/NTUA.
- Currently, it is a FIWARE-enabled platform, which has been built and evolved through different EU-funded projects (starting in iWidget project; 2012-2015).

Monitor, analyse and get advice on water consumption, using smart meters

Monitoring and control of Sewer Mining Unit

Monitoring and control of a **Managed Aquifer Recharge and Recovery** installation

For the Bodø case, it aims to assist in water efficiency at the household level by delivering information (e.g., water volume, pressure, temperature) from smart-meters, available for leak detection of water supply networks as well as demand management at a household level.

Comparison of statistical characteristics of selected properties, along with boxplots.

Most recent measurements and an interactive graph.

Outcomes

- New insights: SWOT analysis, GDPR, UWWTD, Nature based solutions
- Contributing to innovation
- Strengthened connections with local, national and international partners

Tusen takk

b-watersmart.eu ₃₉

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 869171. The publication reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.